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Abstract

The proposed numerical analysis of moderately thick plates subject to rather general boundary
conditions is based on the direct boundary element method (BEM) in the frequency domain. First order
shear-deformation theory of the Reissner–Mindlin-type is considered. A step forward in efficiency is
obtained when the force and double force with moment Green’s functions of the rectangular simply
supported base plate of the same stiffness are applied. The time-reduced equations of hard-hinged
polygonal plates correspond to those of a background Kirchhoff plate having frequency-dependent
effective parameters like mass, lateral and in-plane load, and is further forced by imposed fictitious
curvatures. This analogy holds even for the quasi-static shear forces and bending moments, i.e., when
inertia effects become negligible. Furthermore, it can be shown that, in the static case, these stress resultants
for certain groups of Reissner-type shear-deformable plates are identical with those resulting from the
Kirchhoff theory in the background. Since this analogy is restricted to hard-hinged supports of straight
edges, it is necessary to apply, e.g., the direct BEM of analysis to the plate of general planform and
boundary conditions. The main effort is thus to study the properties and effective representations of the
Green’s dyadics and their singularities, in view of their proper integration. Similarly as for Kirchhoff plates,
the strong singularity of the infinite domain is identified for the rectangular plate and subject to indirect
integration. The resulting direct BEM proves to be efficient, robust and, in connection with proper pre- and
post-processors, becomes an effective tool of engineering analyses just within the frequency limits given by
the first two of the three spectral branches.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Vibration of plates and shells have become the main topics of the dynamics of continuous
structures, and Leissa’s comprehensive monographs [1,2] are recognized as the most informative
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and definitive works in this field. In addition to the analysis of plates of various geometry
and boundary conditions according to the classical Lagrange–Kirchhoff thin-plate theory,
refined plate theories taking into account the influence of shear, rotatory inertia, and
transverse normal stress have been developed in the literature, see e.g., the references given in
Ref. [3]. Since the complexity of the resulting equations is quite high, there was a need
for benchmark solutions, suitable for calibration of numerical routines. Furthermore, the
question, whether results of the thin-plate theory correspond directly to those of the refined
theories, a challenging task of analysis with reference to the background concept, is investigated in
Ref. [4].
In the present paper, a numerical direct boundary element method (BEM) of analysis

of moderately thick plates subject to rather general boundary conditions is developed.
Numerical efficiency is improved when the Green’s function of the rectangular simply
supported base plate of the same stiffness is applied. It has been shown in Ref. [4] that the
time-reduced equations (i.e., in the frequency domain) of hard-hinged polygonal plates reduce
to those of a lower order background, e.g., to a Kirchhoff plate having effective mass and
being loaded by effective lateral and in-plane forces and by imposed fictitious ‘‘thermal-
type’’ curvatures. The corresponding influence functions are derived by means of analogies
between the refined problem and the classical theory. Using the direct BEM, free and
forced vibrations of moderately thick transversely isotropic homogeneous plates are thus
studied in the frequency domain, where the influences of plate shear and rotatory inertia
(the latter will be neglected in the numerical study) are basically taken into account according
to Mindlin’s approximation [5]. Generalizing Mindlin’s theory, the present formulation
includes first order shear-deformation theories. The restriction to the first order theory
presented in the paper is justified by the fact that, for a wide range of applications, first
order shear-deformation theories provide a satisfactory compromise between accuracy and
computational efficiency, see e.g. Ref. [6]. Also sandwich plates with thin faces, common
structural elements in aeronautics, fit into the context of first order shear-deformation
theories (see Refs. [7,8]). A survey of buckling and post-buckling behavior of laminated plates
is given in Ref. [9].
Refined expressions for bending moments and shear forces have been studied in analogy

to their thin-plate counterparts. In the static case, these stress resultants for certain groups
of the Reissner-type shear-deformable plates become identical with those resulting from the
Kirchhoff theory. The first account of this analogy has been presented in Ref. [10],
where deflections as well as stress resultants have been discussed according to various
static shear-deformable theories. Analogies concerning the natural frequencies of Reissner–
Mindlin plates have been considered in Ref. [11], where various complicating effects have
been taken into account, such as isotropic in-plane forces and a two-parameter foundation
of the moderately thick plate. These analogies refer to the simpler cases of Kirchhoff plates as
well as to vibrating pre-stressed membranes. The main result of the membrane analogy is
that the flexural, thickness-shear, and thickness-twist modal frequencies of polygonal simply
supported Reissner–Mindlin plates can be derived from Helmholtz equations with appropriate
boundary conditions. An extension in the frequency domain, to include forced vibrations,
has been given in Refs. [12,13], and similar analogies for laminated plates have been presented
in Ref. [14].
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2. Hard-hinged supported polygonal plates of the Reissner–Mindlin-type

In Ref. [5], Mindlin derived the sixth order system of differential equations for the deflection w

and the cross-sectional rotations cx; cy; which, when properly generalized, takes the form

K

2
½ð1� nÞDcx þ ð1þ nÞðcx;x þ cy;yÞ;x� �

1

s
ðcx þ w;xÞ ¼ r .cx; ð1Þ

K

2
½ð1� nÞDcy þ ð1þ nÞðcx;x þ cy;yÞ;y� �

1

s
ðcy þ w;yÞ ¼ r .cy; ð2Þ

1

s
ðDw þ cx;x þ cy;yÞ þ p ¼ rh .w; ð3Þ

K ¼ Eh3=12ð1� n2Þ; s ¼ 1=k2Gnh; r ¼ rh3=12: ð4Þ

In Eqs. (1)–(4), ðx; yÞ denote a global Cartesian co-ordinate system, and D is the two-
dimensional Laplace operator. Several tracers are used in Eqs. (1)–(3) to account for various
effects; s denotes a shear tracer, and Gn takes into account the effect of transverse isotropy. If
Gn ¼ G; i.e., Gn is equal the shear modulus G; the material is isotropic. The moderately large but
constant thickness of the homogeneous plate is denoted h; and r is the mass density. Pao and Kaul
[15] reported about the proper choice of the shear factor k2: The terms on the right-hand sides of
Eqs. (1)–(3) are due to rotatory and transverse inertia, respectively, where a dot denotes the time
differentiation, and r accounts for the influence of rotatory inertia, Eq. (4).
In the frequency domain, elimination of the cross-sectional rotations by adding properly

differentiated Eqs. (1) and (2) and substituting ðcx;x þ cy;yÞ from Eq. (3), render the fourth order
equation of an effectively loaded Kirchhoff plate in the frequency domain, hence defining a lower
order background structure,

O: KDDw � %nDw � %mw ¼ %q � D %MT; ð5Þ

where the time factor expðiotÞ is understood, and the effective (frequency-dependent) parameters
are

%n ¼ �ðKsrh þ rÞo2; %m ¼ rho2ð1� rso2Þ; %q ¼ pð1� rso2Þ; %MT ¼ Ksp: ð6Þ

%n and %m denote effective hydrostatic in-plane force and mass density of unit plate area,
respectively, and %q is an effective transverse force loading. p is the actual lateral time harmonic
pressure load and %MT is a fictitious curvature (see Ref. [16] for governing equations of actually
thermally loaded plates).
Any solution of Eq. (5) is a particular solution for the deflection of the Reissner–Mindlin

problem, governed by Eqs. (1)–(4) with assigned frequency. It is shown in Ref. [4] that the analogy
is complete for polygonal-shaped plates with hard-hinged supports. The boundary conditions of
this simply supported Reissner–Mindlin plate, where ðn; sÞ denotes a local Cartesian co-ordinate
system at the boundary G with the unit normal n,

G: w ¼ 0; cs ¼ 0; mn ¼ Kðcn;n þ ncs;sÞ ¼ 0; ð7Þ

are transformed to a simpler form in the special case of straight edge segments, by noting from the
second condition in Eq. (7) that cs;s ¼ 0 along the boundary G: Therefore, the third boundary
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condition (7) reduces to cn;n ¼ 0: Substitution into Eq. (3), which is considered to hold along the
straight edge segment, results in the non-homogeneous Navier boundary conditions

G: w ¼ 0; KDw ¼ � %MT: ð8Þ

Eqs. (5) and (8) correspond to the boundary value problem of a simply supported Kirchhoff plate
with an effective load %q and an imposed curvature-type load %MT: In the special case of hard-
hinged boundary conditions, no singular supporting forces appear at the corner points of the
boundary G:

3. The shear-deformable plate with force and moment load

Subsequently, the original Mindlin plate theory is simplified by neglecting the rotatory inertia
so that r ¼ 0: Hard-hinged boundary conditions understood, the modified relations given
subsequently thus remain exactly valid in the static problem, o-0; and, e.g., remains
approximately valid for dynamically loaded plates made of transversely isotropic material,
where the ratio E=Gn

b2ð1þ nÞ; where E denotes the in-plane elastic modulus. In this case, it can
be expected that the effect of shear deformation dominates over the effect of rotatory inertia.
Including the additional action of distributed moment loads %mx and %my (especially in view of the
determination of the Green’s dyadics), the following modified boundary value problem is
obtained (see also Ref. [17]):

O: KDDw � %nDw � %mw ¼ p � KsDp þ KDV ; ð9Þ

G: w ¼ 0; Dw ¼ V � sp; ð10Þ

where, observing simplifications in Eq. (6) and the additional term for the distributed moment
load,

%n ¼ �Ksrho2; %m ¼ rh o2; V;i ¼ %mi=K ; i ¼ x; y: ð11Þ

The cross-sectional rotations then become, with the deflection due to force and moment load
substituted and rotatory inertia neglected (see also Ref. [4] for detailed derivation)

ci ¼ �Ks½Dw þ sðp þ rh o2wÞ � V �;i � w;i; i ¼ x; y: ð12Þ

Both the bending moments and the shear forces in the Mindlin plate are given by the
constitutive law for the linear elastic plate,

mx

my

mxy

2
64

3
75 ¼ K

1 n 0

n 1 0

0 0 ð1� nÞ=2

2
64

3
75

cx;x

cy;y

cx;y þ cy;x

2
64

3
75; ð13Þ

qi ¼
1

s
ðci þ w;iÞ ¼ �K ½Dw þ sðp þ rho2wÞ � V �;i; i ¼ x; y: ð14Þ
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4. Influence functions of hard-hinged supported rectangular shear-deformable homogeneous plates

The Green’s dyadics for the single force and the double force with moment of a rectangular
plate ða; bÞ; are subsequently derived by differentiating properly the force deflection Green’s
function and by employing the analogy to the effective Kirchhoff background.

4.1. The force influence functions

The lateral deflection of the rectangular plate at the point n ¼ ðx; ZÞT due to a unit single force
acting at the source point x ¼ ðx; yÞT; p ¼ dðx� nÞ; can be expressed in the form of a double series
(see, e.g., Ref. [18]):

*wðn;x; lÞ ¼
4

abK

XN
m¼1

XN
n¼1

ð1þ Ks amnÞsin mpx
a
sin npZ

b
sin mpx

a
sin npy

b

½a2mn � l4ð1þ KsamnÞ�
; ð15Þ

where

l4 ¼
rho2

K
; amn ¼

mp
a

� 	2
þ

np
b

� 	2
 �
: ð16Þ

The result can be verified by applying the analogy (i.e., by considering the single-force loaded
rectangular effective Kirchhoff background plate), thus solving Eq. (9) with V ¼ 0: Due to the
shear influence, this solution exhibits the weak singularity, Bln r; where r ¼ jx� nj-0 .
The reduction to a fast-convergent single-sum representation has been derived in Ref. [12], that

is given by

*wðn;x; lÞ ¼
XN
m¼1

ðað1Þm þ að2Þm Þ sin
mpx

a
; ð17Þ

with the following abbreviations:

að jÞ
m ðl; yÞ ¼

ð�1Þ j

aK

ð1þ Ks ajÞ
DðlÞ

sinmpx
a

k
ð jÞ
m ½1� expð�2kð jÞ

m bÞ�
ðEð jÞ

m þ F ð jÞ
m Þ;

Eð jÞ
m ðZ; y; kð jÞ

m Þ ¼ exp½�kð jÞ
m jy � Zj� � exp½�kð jÞ

m ðy þ ZÞ�;

F ð jÞ
m ðZ; y; b; kð jÞ

m Þ ¼ exp½�kð jÞ
m ð2b � jy � ZjÞ� � exp½�kð jÞ

m ð2b � jy þ ZjÞ�;

kð jÞ
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmp=aÞ2 � aj

q
; a1;2 ¼

1

2
½Ksl47

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKsl4Þ2 þ 4l4

q
�; j ¼ 1; 2: ð18Þ

The cross-sectional rotation for the case of the force load is calculated in terms of derivatives of
the deflection w and the unit single force, according to Eq. (12), and again setting V 	 0;

*ci ¼ �
4

abK

XN
m¼1

XN
n¼1

½sin mpx
a
sin npZ

b
sin mpx

a
sin npy

b
�;i

½a2mn � l4ð1þ KsamnÞ�
; i ¼ nðnÞ; sðnÞ; ð19Þ

ð:Þ;n ¼
@

@nðnÞ
ð:Þ ¼ ð:Þ;xnx þ ð:Þ;ZnZ; ð:Þ;s ¼

@

@sðnÞ
ð:Þ ¼ ð:Þ;xsx þ ð:Þ;ZsZ: ð20Þ
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The force influence functions of the cross-sectional rotations *ci show a regular behavior in the
limit r ¼ jx� nj-0; and ðn; sÞ denotes a local orthogonal co-ordinate system at the observation
point n:
The force influence bending moments are derived by inserting the derivatives of Eq. (19) into

Eq. (13), exhibiting the same weak singularityBln r; where r ¼ jx� nj-0 as observed in the case
of the deflection, represented by Eq. (15).
The force influence shear forces, however, are strongly singular of the order one, Br�1 where

r ¼ jx� nj-0;

*qiðn; x; lÞ ¼
XN
m¼1

XN
n¼1

ðcð1Þmn þ cð2ÞmnÞ;i sin
mpx

a
sin

npy

b
; i ¼ nðnÞ; sðnÞ; ð21Þ

cð jÞ
mnðlÞ ¼

4ð�1Þ j

abK

amn

DðlÞ
sin mpx

a
sin npZ

b

ðaj � amnÞ
; DðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKsl4Þ2 þ 4l4

q
; j ¼ 1; 2: ð22Þ

4.2. The moment influence functions

The moment influence function of the shear-deformable rectangular plate is considered by
taking into account a double force (parallel to the midplane) with a time harmonic moment per
unit of area. Applying the analogy to the effective background Kirchhoff plate, Eqs. (9) and (10)
are to be solved, setting p 	 0 and considering V;m ¼ K�1dðx� nÞ; where m gives the direction in
the midplane with respect to the Cartesian co-ordinates, see Eq. (11). The right-hand side of
Eq. (9) is thus proportional to the derivative of the concentrated moment. Inspecting the
deflections resulting from the force and moment load, we note that the latter is given by proper
differentiation of the force influence function in Eq. (15),

*wMk ðx; n; lÞ ¼
@

@kðxÞ
4

abK

XN
m¼1

XN
n¼1

sin mpx
a
sin npZ

b
sin mpx

a
sin npy

b

½a2mn � l4ð1þ KsamnÞ�

 !
; k ¼ nðxÞ; sðxÞ; ð23Þ

where the shear factor in the nominator must be put to zero, and, as is known from the classical
solution of the Kirchhoff plate by taking the derivative with respect to the point of application of
the concentrated moment x (compare, e.g., Ref. [19]),

ð:Þ;n ¼
@

@nðxÞ
ð:Þ ¼ ð:Þ;xnx þ ð:Þ;yny; ð:Þ;s ¼

@

@sðxÞ
ð:Þ ¼ ð:Þ;xsx þ ð:Þ;ysy: ð24Þ

The moment influence function exhibits a regular behavior in the limit r ¼ jx� nj-0:
When calculating the influence functions of the cross-sectional rotations, p 	 0 in Eq. (12), by

substituting the moment influence deflection of Eq. (23), an additional, shear-determined
dynamical term enters with the result of the appearance of a weak singularity, Bln r; where
r ¼ jx� nj-0: (see Ref. [17] for detailed derivation),

*cMk

i ðn; x; lÞ ¼
4

abK

XN
m¼1

XN
n¼1

Cmn sin
mpx

a
sin

npZ
b

� �
;iðxÞ

sin
mpx

a
sin

npy

b

� 	
;kðxÞ

; ð25Þ

Cmn ¼ ½Ksamn � ðKsÞ2l4 � 1�½a2mn � l4ð1þ KsamnÞ��1: ð26Þ
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The moment-determined moment influence functions are derived from Eq. (13) by substituting
the derivatives of Eq. (25). As expected, a first order strong singularity is encountered, Br�1;
where r ¼ jx� nj-0:
The moment influence functions of the shear forces exhibiting the weak singularityBln r; where

r ¼ jx� nj-0; are explicitly derived by setting p 	 0 in the more cumbersome expression given by
Eq. (14):

*qMk

i ðn;x; lÞ ¼
4

ab

XN
m¼1

XN
n¼1

Qmn sin
mpx

a
sin

npZ
b

� �
;iðxÞ

sin
mpx

a
sin

npy

b

� 	
;kðxÞ

; ð27Þ

Qmn ¼ ½amn � Ksl4 � 1�½a2mn � l4ð1þ KsamnÞ��1; Bln r; r ¼ jx� nj-0: ð28Þ

5. Direct BEM for shear-deformable plates with classical boundary conditions under lateral force

loading

The differential equation (9) is applied without considering the moment per unit of area, thus
V 	 0: It is solved subsequently, after transforming it into an integral equation, where the state
vector is given by (see, e.g., Ref. [20])

wðxÞ

cnðxÞ

csðxÞ

2
64

3
75þ

Z
G

*qn *mn *mns

*qMn
n *mMn

n *mMn
ns

*qMs
n *mMs

n *mMs
ns

2
64

3
75

w

cn

cs

2
64

3
75 dG

¼
Z
G

*w *cn
*cs

*wMn *cMn
n

*cMn
s

*wMs *cMs
n

*cMs
s

2
664

3
775

qn

mn

mns

2
64

3
75 dGþ

Z
O

*wp

0

0

2
64

3
75 dO: ð29Þ

The direct BEM is then applied by considering boundary conditions given in Table 1.
Discretizing the actual boundary of the Mindlin plate according to the collocation method and

by considering Eq. (29) at the boundary, x-s; gives, using hypermatrix notation,

Hu ¼ Lf þ p; ð30Þ

where u contains the kinematic values at the collocation points, f represents the dynamic
boundary conditions at these points, and p is the particular deflection integral due to the external
lateral load p:

Table 1

Classical boundary conditions of the shear-deformable plate

Hard-hinged support w ¼ 0 mn ¼ 0 cs ¼ 0
Soft-hinged support w ¼ 0 mn ¼ 0 mns ¼ 0
Clamped w ¼ 0 cn ¼ 0 cs ¼ 0
Free mn ¼ 0 qn ¼ 0 mns ¼ 0
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All elements of matrix L; the submatrices H2; H3; H
Mn

1 ; HMs

1 of the hypermatrix

H ¼

H1 H2 H3

H
Mn

1 H
Mn

2 H
Mn

3

H
Ms

1 H
Ms

2 H
Ms

3

2
664

3
775; ð31Þ

and all the remaining off-diagonal elements of H contain regular or weakly singular integrals. The
regular integrals are evaluated numerically by means of the standard Gaussian quadrature
formula. The weakly singular integrals are determined by splitting the corresponding influence
function into the singular (logarithmic) part of the infinite plate domain and a remaining regular
part, that accounts for the hard-hinged boundary conditions, compare Ref. [13]. The latter is
again evaluated by means of the standard Gaussian quadrature formula. The weakly singular
part is computed by using the one-dimensional logarithmic Gaussian integration scheme, see,
e.g., Ref. [21].
The diagonal elements of H1; H

Mn

2 ; HMn

3 ; HMs

2 ; HMs

3 ; exhibit strong singularities and
therefore they are considered separately. Strongly singular integrals of the first kind are
integrated indirectly by applying the following rigid body motions of the actual plate (see Ref. [22]
for details):
(i) a unit translation in the lateral direction:

H1 H2 H3

H
Mn

1 H
Mn

2 H
Mn

3

H
Ms

1 H
Ms

2 H
Ms

3

2
664

3
775

I

0

0

2
64
3
75 ¼

0

0

0

2
64
3
75) H1ii ¼ �

XK

j¼1
jai

H1ij; ð32Þ

where j is the number of the collocation point, j ¼ 1; 2;y;K :
(ii) small unit rotations about the local ðn; sÞ axes, respectively:
Note the projections of the radial distance on the co-ordinate axes, when inspecting Eqs. (33)

and (34),

H1 H2 H3

H
Mn

1 H
Mn

2 H
Mn

3

H
Ms

1 H
Ms

2 H
Ms

3

2
664

3
775

ðx � xÞj
I

0

2
64

3
75 ¼

0

0

0

2
64
3
75) HMn

2ii ;H
Ms

2ii ; ð33Þ

H1 H2 H3

H
Mn

1 H
Mn

2 H
Mn

3

H
Ms

1 H
Ms

2 H
Ms

3

2
664

3
775

ðy � ZÞj
0

I

2
64

3
75 ¼

0

0

0

2
64
3
75) HMn

3ii ;H
Ms

3ii : ð34Þ

Sorting for the unknown (non-prescribed) boundary values in Eq. (30) results in a linear
system of equations for the unknown kinematic and/or dynamic boundary values of the actual
plate,

Ay ¼ B: ð35Þ
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6. Frequency response function of hard-hinged trapezoidal plates

As an illustrative example the frequency response function (FRF), wðOÞ=h; of a trapezoidal
plate due to a spatial uniform (time-harmonic) pressure load p0 is presented. The geometry chosen
is a1=b ¼ 1:9; g ¼ 45�; and the deflection is determined at the central point Dð0:4a1; 0:5bÞ: The
aspect ratio of the basic rectangular domain is a=b ¼ 2:3; as shown in Fig. 1.
Non-dimensional inputs are the frequency parameter O ¼ oa

ffiffiffiffiffiffiffiffiffi
r=G

p
; the load factor pn

0 ¼
p06ð1� nÞa3=Gh3 ¼ 1:0; and the thickness ratio h=a ¼ 0:15: The Mindlin shear factor of k2 ¼
p2=12 (see, e.g., Ref. [5]), and Poisson’s ratio of n ¼ 0:2 are selected.
In Figs. 2 and 3, examples of the force influence functions *cxðn; x ¼ a=2; y ¼ b=2Þ according to

Eq. (19), and *mxðn; x ¼ a=2; y ¼ b=2Þ determined by substituting differentiated Eq. (19) into
Eq. (13), of the basic rectangular domain with the non-dimensional forcing frequency O ¼ 2:5
assigned are illustrated. Note the weak singularity apparent in Fig. 3 at the point of application of
the unit force.
The numerical BEM procedure, Eq. (30) is applied to the trapezoidal plate, considering

two different boundary conditions along the oblique edge, with hard-hinged conditions assumed
at the remaining three edges. The actual trapezoidal domain is embedded into the basic hard-
hinged supported rectangular plate thus achieving coincidence along three boundaries
ðAB;CD;DAÞ; see Fig. 1. It is sufficient to discretize the oblique edge BC into 15 quadratic
boundary elements.
The first result of the numerical analysis is the FRF of the undamped oblique plate. Linear

damping should be subsequently considered by applying the quadrature-type elastic–viscoelastic
correspondence principle holding in the frequency domain. By choosing a one-parameter

A

a

C

D

b

B1

B

a 1

C1

D

x

y

γ = 45°

Fig. 1. Geometry of the trapezoidal plate embedded into a rectangular basic domain.
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damping (e.g., a complex shear modulus) a simple integration of the weighted undamped FRF
along the real frequency axis renders the damped FRF. For the description of this procedure, see
Ref. [23].

6.1. Trapezoidal plate with clamped oblique edge

Inspection of Eq. (29) reveals the absence of strong singularities and the numerical evaluation
of the matrix elements in L in Eq. (30) is reduced to the Gaussian integration scheme. As an

Fig. 2. Influence function of the cross-sectional rotation *cxðx; nÞ due to a unit force acting at x ¼ ða=2; b=2ÞT; forcing
frequency parameter O ¼ oa

ffiffiffiffiffiffiffiffiffi
r=G

p
¼ 2:5:

Fig. 3. Influence function of the bending moment *mnðx; nÞ due to a unit force acting at x ¼ ða=2; b=2ÞT; forcing
frequency parameter O ¼ oa

ffiffiffiffiffiffiffiffiffi
r=G

p
¼ 2:5:
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illustrative example the undamped FRF of deflection at the central point D (see Fig. 1) is shown in
Fig. 4.

6.2. Hard-hinged supported trapezoidal plate

The numerical effort increases due to the appearance of strongly singular influence functions in
the submatrices of H; as is seen by inspecting Eqs. (29) and (30). Thus, the indirect integration
procedure, described in Eqs. (32)–(34), has to be applied in addition to the Gaussian integration
scheme to obtain the coefficients in Eq. (30). The non-dimensional undamped FRF at the
midpoint D (see Fig. 1) is shown in Fig. 5, exhibiting a lower number of resonances, when
compared with Fig. 4 for the same frequency range.
Alternatively, in Ref. [13] the case of hard-hinged supported polygonal Mindlin plates is solved

by considering Eqs. (9), (10) with V 	 0 and further splitting the effective Kirchhoff plate
problem into two effective membrane problems of the same polygonal planform. Consequently,
the indirect BEM is applied to the lower order Helmholtz problem for the membranes, thus
circumventing the integration of strong singularities.

Fig. 4. Non-dimensional FRF wDðOÞ=h at a central point Dð0:4a1; 0:5bÞ due to pn
0 ¼ p06ð1� nÞa3=Gh3 ¼ 1:0; frequency

parameter O ¼ oa
ffiffiffiffiffiffiffiffiffi
r=G

p
; hard-hinged supported along ðAB;CD;DAÞ and clamped along the skew edge BC:

Fig. 5. Non-dimensional FRF wDðOÞ=h at a central point Dð0:4a1; 0:5bÞ due to pn
0 ¼ p06ð1� nÞa3=Gh3 ¼ 1:0; frequency

parameter O ¼ oa
ffiffiffiffiffiffiffiffiffi
r=G

p
; hard-hinged supported along all edges.
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7. Conclusions

The direct BEM is the most efficient numerical method available for the linear analysis of
plates. Dynamically loaded shear-deformable plates are well characterized by frequency response
functions. Consequently, the analysis is performed in the frequency domain. Plates of general
planform are considered embedded in a rectangular and hard-hinged supported domain. For the
latter, the force and double-force with moment Green’s dyadics are derived by enforcing the
analogy to a background Kirchhoff plate with frequency-dependent parameters. Some elements
of the Green’s dyadic exhibit strong singularities which are integrated indirectly by applying the
kinematic approximation.
For the basic rectangular hard-hinged supported plate, relations to the Kirchhoff-plate

background simplify the numerical analysis considerably with respect to the Green’s dyadics.
A uniformly and time harmonically forced trapezoidal plate serves as illustration of the efficient

numerical scheme, which is readily available for practical applications due to the listed Green’s
dyadics.
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